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ТҮЙІН 
Мақалада болашақ туризм бакалаврлары мен магистрлерін мамандандырылған 

бағдарламалық өнімдерін, ақпараттық-ізденіс жүйелерін жəне ғаламтор ресурстарын  кəсіби 
қызметінде пайдалану қажеттілігі дəлелденген.   

 
RESUME 

In the article there was founded the necessity of preparation of students - the future of 
bachelors and masters on tourism in the area of integrated use of specialized software, information 
retrieval systems and resource allocation Internet in their professional activities. The content of the 
main components of information activity of bachelors and masters on tourism were proved. It was 
grounded the principles of the integrated use of ICT in professional activity of bachelors and masters 
on tourism. 
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Abstract 
This article suggests a low level approach for the examination of flash memories and describes 

low-level data acquisition methods for making full memory copies of flash memory devices. Artifacts, 
caused by flash specific operations likeblock erasing and wear leveling, are discussed and directions 
are given for enhanced data recovery and analysis on data originating from flash memory. 
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Introduction 

Over recent years, corporate end-users have increasingly needed to be fully mobile and 
connected, taking work home or out of the office to keep up their productivity. Staff needs to be able 
to synchronise files between a computer and the drive to allow key data to be backed up and available 
for use on the road or on other computers. Thus, the use of mobile devices such as laptops, notebooks, 
universal serial bus (USB) flash drives, personal digital assistants, advanced mobile phones and other 
mobile devices have proliferated in recent years [1,2]. Flash memory is currently the most dominant 
non-volatile solid-state storage technology in consumer electronic products. An increasing number of 
embedded systems use high level file systems comparable to the file systems used on personal 
computers.  

Using of different types of devices (modules) of flashmemory for the electronic engineering 
requires the detailed acquaintance with processes which take a place at a recording and reproducing of 
information in such devices. 

At the same time, for manufacturers of memory devices, some parts, such as, the wear 
levelling algorithm can be very sensitive intellectual property, so any inquiries that look like questions 
about the wear levelling algorithm will often be left unanswered [3]. 

Flash technology 
Flash memory is a type of non-volatile memory that can be electrically erased and 

reprogrammed. Flash memory comes in two flavors, NOR flash and NAND flash, named after the 
basic logical structures of these chips. Contrary to NAND flash, NOR flash can be read byte by byte in 
constant time which is the reason why it is often used when the primary goal of the flash memory is to 
hold and execute firmware, while parts of NOR flash that are not occupied by firmware can be used 
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for user data storage. Most mobile media, like USB flash disks, or multimedia centred devices like 
digital camera’s and camera phones, use NAND flash memory to create compact mobile data storage. 

Physical Characteristics 
The physical mechanism to store data in flash memory is based on storing electrical charge 

into a floating gate of a transistor. This charge can be stored for extended periods of time without 
using an external power supply but gradually it will leak away caused by physical effects. Data 
retention specifications for current flash memory are between 10 and 100 years. 

Flash memory can be written byte for byte, like EEPROM, but it has to be erased in blocks at 
a time before it can be re-written. Erasing results in a memory block that is filled completely with 1’s. 
In NAND flash, erase blocks are divided further into pages, for example 32 or 64 per erase block [4]. 
A page is usually a multiple of 512 bytes in size, to emulate 512 byte sector size commonly found in 
file systems on magnetic media. Additionally, a page has a number of so called “spare area” bytes, 
generally used for storing meta data. Some flash disk drivers use the concept of zones. A zone is a 
group of blocks, usually 256 to 1024. Contrary to blocks and pages, a zone is just a logical concept, 
there is no physical representation. A dissection of NAND flash memory is shown in Figure 1. 
 

 

Figure 1 – Dissection of NAND flash memory 
 

Each page has an area of bytes, often referred to as the redundant area or spare area. Table I 
shows spare area sizes for different page sizes. The spare area can contain information on the status of 
the block or the page. 
 
Table 1 – Example spare area sizes for different page sizes 

 

Page size, bytes 
Size, bytes 

Spare area size Total page size Block size 

256 8 264 8448 

512 16 528 16896 

2048 64 2112 135168 

 
For instance when a block turns bad, it will be marked here. The spare area can also contain 

"Error Checking and Correcting" (ECC data). ECC data is used to detect errors in a page. With the 
ECC data an error of one bit can be corrected, after which the block will be marked bad. Finally the 
spare area can contain information necessary for the physical to logical address mapping. 

Erasing a block causes a block to deteriorate. Blocks can be erased between 104 and 106 times 
before bits in this block start to become inerasable. Such block is then called a "bad block". NAND flash 
usually already has bad blocks when leaving the factory. In datasheets of NAND flash chips, the 
guaranteed minimal number of good blocks when first shipped is specified. Typically at least 98% of the 
blocks are guaranteed to be in working order. Initial bad blocks are marked as such in the spare area. 

In order to spread the erasing of blocks as evenly as possible over the full range of physical 
blocks, flash memory vendors have developed so called "wear levelling" algorithms [5]. The idea is 
that spreading the wear, caused by erasing a block, as much as possible over the whole capacity of the 
flash memory will increase the overall lifetime of the memory. Wear leveling can be seen as a 
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dynamic process that rearranges pages and/or blocks continuously in order to extend flash lifetime. 
The electrical interface of NAND flash differs from that of RAM. NAND flash has a 

multiplexed address/data bus, generally referred to as the I/O (Input/Output) lines. This bus can be 
either 8 or 16 bits wide. Data in the NAND flash chip is accessed by first applying the address of the 
required data on the I/O lines. As the highest address is generally higher than can bereached with 8 or 
16 I/O line bits, the address is latched into the chip in three to five address cycles. After the address is 
latched into the chip, the data can be clocked out over the same I/O lines. A typical sequence to get 
access to data in a NAND flash chip is shown in table 2. 
 
Table 2 – Addressing cycles for a NAND flash memory 

 

Cycle 
Input/Output lines 

I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7  

1 A0 A1 A2 A3 A4 A5 A6 A7 Column Address 

2 A8 A9 A10 A11 Low Low Low Low Column Address 

3 A12 A13 A14 A15 A16 A17 A18 A19 Row Address 

4 A20 A21 A22 A23 A24 A25 A26 A27 Row Address 

 

Logical Characteristics 
There are several ways in which flash memory can be used as file storage in embedded 

systems [3]. Three of them are explained below. A simplified diagram of components involved in host 
Operating System (OS) access to a flash file system is shown in Figure 2. As a reference, the situation 
for a hard disk is shown on the left hand side. In case of a hard disk, the host OS accesses the hard disk 
through the file system driver (FSD). The FSD issues commands to the hard disk, for instance the 
ATA command "Read Sector" to read data from a Logical Block Address (LBA) - the address of data 
by the linear mapping of storage units. 

 

 

Figure 2 – Components involved in hard disk and flash memory access 
 

Flash Translation Layer 
NAND flash is typically used with a flash translation layer implementing a disk-like 

interfaceof addressable, re-writable 512-byte blocks, e.g. over an interface such as SATA or SCSI-
over-USB.The FTL maps logical addresses received over this interface (Logical Page Numbers or 
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LPNs) to physical addresses in the flash chip (Physical Page Numbers, PPNs) and manages the details 
of erasure, wear-leveling, and garbage collection. 

A flash translation layer could in theory maintain a map with an entry for each 512-byte 
logical page containing its corresponding location; the overhead of doing so would be high, however, 
as the map for a 1GB device would then require 2M entries, consuming about 8MB; maps for larger 
drives would scale proportionally. FTL resource requirements are typically reduced by two methods: 
zoning and larger-granularity mapping.  

Zoning refers to the division of the logical addressspace into regions or zones, each of which 
is assigned its own region of physical pages. In other words, rather than using a single translation layer 
across the entire device, multiple instances of the FTL are used, one per zone. The map for the current 
zone is maintained in memory, and when an operation refers to a different zone, the map for that zone 
must be loaded from the flash device. This approach performs well when there is a high degree of 
locality in access patterns; however it results in high overhead for random operation. Nonetheless it is 
widely used in small devices (e.g. USB drives) due to its reduced memory requirements.  

By mapping larger units, and in particular entire erase blocks, it is possible to reduce the size 
of the mapping tables even further [6]. On a typical flash device (64-page erase blocks, 2KB pages) 
this reduces the map for a 1GB chip to 8K entries, or even fewer if divided into zones. This reduction 
carries a cost in performance: to modify a single 512-byte logical block, this block-mapped FTL 
would need to copy an entire 128K block, for an overhead of 256×. 

Whenever units smaller than an erase block are mapped, there can be stale data: data which 
has been replaced by writes to the same logical address (and stored in a different physical location) but 
which has not yet been erased. In the general case recovering these pages efficiently is a difficult 
problem. However in the limited case of hybrid FTLs, this process consists of merging log blocks with 
blocks containing stale data, and programming the result into one or more free blocks. These 
operations are of the following types: switch merges, partial merges, and full merge. A switch merge 
occurs during sequential writing; the log block contains a sequence of pages exactly replacing an 
existing data block, and may replace it without any further operation; the old block may then be 
erased. A partial merge copies valid pages from a data block to the log block, after which the two may 
be switched. A full merge is needed when data in the log block is out of order; valid pages from the 
log block and the associated data block are copied together into a new free block, after which the old 
data block and log block are both erased.  

Many applications concentrate their writes on a small region of storage, such as the file 
allocation table (FAT) in MSDOS-derived file systems. Naive mechanisms might map these logical 
regions to similarsized regions of physical storage, resulting in premature device failure. To prevent 
this, wear-leveling algorithms are used to ensure that writes are spread across the entire device, 
regardless of application write behavior; these algorithms are classified as either dynamic or static. 
Dynamic wear-leveling operates only on overwritten blocks, rotating writes between blocks on a free 
list; thus if there are � blocks on the free list, repeated writes to the same logical address will cause   
� � 1 physical blocks to be repeatedly programmed and erased. Static wear-leveling spreads the wear 
over both static and dynamic memory regions, by periodically swapping active blocks from the free 
list with static randomly-chosen blocks. 

Bad Block Management 
Bad blocks are blocks that contain one or more invalid bits whose reliability is not guaranteed 

[7]. Bad blocks may be present when the device is shipped, or may develop during the lifetime of the 
device. Devices with bad blocks have the same quality level and the same AC and DC characteristics 
as devices where all the blocks are valid. A bad block does not affect the performance of valid blocks 
because it is isolated from the bit line and common source line by a select transistor. Bad block 
management, Low Level Driver (LLD), and the ECC software are necessary to manage the error bits 
in NAND Flash devices. Figure 3 shows how the software is used in an embedded system which uses 
NAND Flash for data storage.  

NAND Flash devices are supplied with all the locations inside valid blocks erased (FFh). The 
bad block information is written prior to shipping. For single-level cell (SLC) small page (528-
byte/256-word page) devices, any block where the sixth byte (x8 device)/first word (x16 device), in 
the spare area of the first page does not contain FFh is a bad block. For SLC large page (2112-
byte/1056-word page) devices, any block where the first and sixth bytes (x8 device)/first word (x16 
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device) in the spare area of the first page does not contain FFh is a bad block. For SLC very large page 
(4224-byte page) devices, any block where the first and sixth bytes in the spare area of the first page 
does not contain FFh is a bad block. For multilevel cell (MLC) devices, any block where the first byte 
in the spare area of the last page does not contain FFh is a bad block. The bad block information must 
be read before any erase is attempted because the bad block information is erasable and cannot be 
recovered once erased. It is highly recommended to not erase the original bad block information. To 
allow the system to recognize the bad blocks based on the original information, it is recommended to 
implement the bad block management algorithm. 

 

Figure 3 – Software for an embedded system using a NAND flash memory 
 

The failures that affect invalid blocks may not all be recognized if methods different from 
those implemented in the factory are used. Once created, the bad block table is saved to a good block 
so that on rebooting the NAND Flash memory the bad block table is loaded into RAM. The blocks 
contained in the bad block table are not addressable. So, if the flash translation layer (FTL) addresses 
one of the bad blocks, the bad block management software redirects it to a good block. 

Low-level data recovery 
The main condition for low-level data recovery - to keep data held on a storage medium 

unchanged [8]. For embedded systems this principle is more challenging than it looks at first sight. 
Issues like network connections are similar to the open systems world although it might be more 
difficult to detect that an embedded system is connected to other systems. For flash memory wear 
leveling might cause unpredictable data changes. For example, switching mobile phones off and/or on 
has shown data changes probably caused by wear leveling and/or garbage collection algorithms. There 
are three possible  data acquisition approaches are presented for obtaining a full copy of flash memory 
data: flasher tools, method using the JTAG (Joint Test Action Group) test access port of an embedded 
device and  method is described in which the flash chip is physically removed and read with an 
external reader. 

Advantages / disadvantages of physical extraction: 

• It can be guaranteed that no data is written in flash memory because the embedded system 
stays powered down. 

• Data from broken or damaged embedded systems can be recovered. 

• A complete physical image can be produced (all data, inclusive spare area, bad blocks etc). 

• A disadvantage is that there is a risk of damaging the flash memory chip due to the heat for 
de-soldering. 

• The embedded system has to be opened to reach and desolder flash memory chips. 
We describe a method of low-level data recovery from flash chip is physically removed. 
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Flash memory chip reader 
A flash memory chip can be read with a commercially available memory chip programmer. A 

disadvantage is that a driver is needed for each type of memory chip. If a driver for a certain type of 
chip is not available, the manufacturer of the programmer has to program this driver. This can take 
some time and is not always possible when a datasheet is not available for example. Another solution 
is to use a universal flash chip reader. This custom made design is called "NFI memory toolkit". A 
schematic is drawn in Figure 4. 
 

Figure 4 – Schematic of NFI memory toolkit 
 

An FPGA is used for communicating with a flash memory chip where configurations are 
available for a NAND and NOR flash protocol (with multiplexed and demultiplexed address bus). All 
parameters, like address bus size and data bus size are fully customizable by the PC software. In case 
of a NOR flash memory a data structure is read from the NOR flash memory (Common Flash 
Interface - CFI data structure). This data structure contains all parameters needed for reading that 
particular flash memory (like protocol, memory size, etc). The command to read this data structure is 
compatible with all protocols and the toolkit software automatically uses the parameters to read a 
NOR flash chip without any configuration from the user. NAND flash chips can also be read 
automatically because the number of protocols used by NAND flash chip is very limited. The toolkit 
software automatically scans all protocols until a correct response is received from the NAND flash 
chip. Due to the automatic configuration properties of the software it is sometimes possible to read 
flash chips even if a datasheet is not available. 

There are several third-party software offerings on the market today. Many of these packages 
provide multiple features, including automatic power failure-recovery, PC-file compatibility, ECC, 
bad-block management, directory support, and wear-leveling.  

File system analysis 
Making an exact copy of the flash chip(s): When the chip is extracted from the PCB, it can be 

read with a device programmer. When reading the content of flash chips one needs to be aware of the 
fact that some programmers have a special way of handling NAND flash. When programming a NAND 
flash in a production environment, the programmer obviously wants to skip bad blocks. Further more, 
when a file is loaded in the programmer, one wants to be sure that the file will fit in the flash chip, so the 
programmer will only accept files smaller than the guaranteed minimal number of good blocks. These 
two properties often also play a role when reading the device. Bad blocks are not read, and only the 
guaranteed minimal number of good blocks is read. Skipping of bad blocks can lead to the following 
problem when reconstructing the high level file system: suppose a USB memory controller divides the 
memory into zones of 256 blocks. Each block (belonging to the high level file system) within a zone has 
to have a unique number, stored in the spare area of each page in that block. Then one bad block in a 
zone arises. After this, the memory is imaged with a programmer that skips bad blocks. The resulting 
image is also split up into zones. Now, the zone with the bad block will contain one block of the next 
zone because all blocks after the bad block will be shifted one block in the image. Now it will be very 
likely that we have two blocks with the same "unique" number in one zone. 

Reading up to only the guaranteed minimum number of good blocks can result in blocks at the 
high end of the memory chip not being read. These blocks might very well contain parts of the high 
level file system so not reading them might hinder reconstruction of the high level file system. There 
are several solutions to these problems. One is to request the manufacturer of the device programmer 
to make a special version of the algorithm for the specific chip which reads all blocks, good and bad. 
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Another is to develop an "in house" solution. For the memory toolkit an algorithm for reading NAND 
flash was developed. Furthermore, an adapter socket was made to make contact to TSOP 48 housings. 
With this system acomplete binary copy of a NAND flash memory chip can be made. The rest of this 
paragraph is based on complete binary copies of flash chips, made with the NFI memory toolkit. 

Converting the copy to the high level file system: in order to convert the exact copy of the 
NAND flash memory back to the file system as seen by the host OS, the meta data in the NAND flash 
memory needs to be interpreted.  

When we want to reconstruct the file system from a physical copy, the mapping from physical 
to logical, we has to explore the meta data. Meta data can be stored in the spare areas of the flash 
memory. In case there is a page size granularity, all spare areas within each block will contain 
different information. In case there is a block size granularity, spare areas within one erase block may 
contain at least a few identical bytes: the ones that indicate the logical block number. Meta data can 
also be stored in the normal pages/blocks. No generic method has yet been developed for USB 
memory to analyze this type of meta data storage. 

Conclusion 
Some techniques have been described for making low level byte-by-byte copies of flash 

memory chips. More research needs to be done on the flash read mechanisms used by flasher tools in 
order to adapt these mechanisms for usage in the next generation of data acquisitions tools. Steps have 
been illustrated for translating acquired flash data to a level that can be understood by existing tools 
targeted towards common used file systems. More research is also needed on the relation between 
flash specific operations like block erasing and wear leveling on one side and the resulting artifacts 
and potentials for data recovery and analysis on the other side. 
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ТҮЙІН 
Мақалада флеш-зердені талдау тұрғылары көрсетілген, олардың  негізінде операциялық 

жүйемен төмен деңгейде өзара əрекеттесу.  Толық флеш-зерде көшірмесін жасаудың кейбір 
тəсілдері, флеш-зердеден алынған деректерді кеңінен қалпына келтіру жолдары көрсетілген. 
Флеш-зердеге тəн операциялардан пайда болған артефактылар талқыланған.   

 
РЕЗЮМЕ 

В статье предлагаются подходы для анализа флеш-памяти, которые основаны на 
низком уровне взаимодействия с операционной системой. Показаны некоторые 
способы создания полных копий флеш-памяти, обозначены пути расширенного 
восстановления данных и анализа данных, извлеченных из флеш-памяти. Обсуждены 
артефакты, вызванные операциями характерными для флеш-памяти, а именно: 
стирание блоков или «выравнивание изнашивания». 


